

MATLABER: Material-Aware Text-to-3D via LAtent BRDF auto-EncodeR

Xudong Xu Shanghai AI Lab

MATLABER

Background: Text-to-image synthesis

Thanks to powerful diffusion model and massive text-image pair data, we have • witnessed great progress in text-to-image synthesis.

Stable Diffusion

Imagen

Background: Text-to-3D generation

- Text-to-3D generation: AIGC exploration from 2D to 3D domain.
- Relying on promising Score Distillation Sampling (SDS), DreamFusion successfully takes the first step in text-to-3D generation.

Background: Text-to-3D generation

Representative follow-ups:

- Magic3D: increase resolution from 64 to 512
- Fantasia3D: better geometry and realistic appearance
- ProlificDreamer: high-fidelity and diverse generation

Magic3D

Fantasia3D

ProlificDreamer

Background: No one cares materials

- DreamFusion: only consider Lambertian reflectance
- Fantasia3D: BRDF materials entangled with environment lights

Background: Text-material data?

- Unfortunately, there does not exist text-material paired dataset.
- However, there are several BRDF material datasets.

Adobe Substance 3D Assets

7

Method: BRDF auto-encoder

- We train a latent BRDF auto-encoder, which acts as a material prior.
- Smoothness and KL losses are imposed to latent codes for a smooth latent space. lacksquare

Method: Text-to-3D generation pipeline

- For geometry modeling, we follow the method proposed in Fantasia3D.
- Material MLP predicts the BRDF latent code z, rather than the BRDF material.
- The obtained latent code is then decoded to 7-dim BRDF via our decoder.
- SDS loss can be applied to rendered images, thus enabling the network training.

Method: Rendering equations

• For a surface point x, we first apply positional encoding and then leverage a material MLP to predict BRDF latent code z, which is then transferred to BRDF k.

$$\mathbf{z}_{\mathbf{x}} = \Gamma(\beta(\mathbf{x}); \gamma), \quad \mathbf{k}_{\mathbf{x}} = \mathcal{D}(\mathbf{z}_{\mathbf{x}}).$$

• Similar to prior works, we also leverage the split-sum method for rendering.

$$egin{aligned} L(\mathbf{x},oldsymbol{\omega}_o) &= L_d(\mathbf{x}) + L_s(\mathbf{x},oldsymbol{\omega}_o), \ L_d(\mathbf{x}) &= \mathbf{k}_d(1-m)\int_\Omega L_i(\mathbf{x},oldsymbol{\omega}_i)(oldsymbol{\omega}_i\cdot\mathbf{n})\mathrm{d}oldsymbol{\omega}_i, \ L_s(\mathbf{x},oldsymbol{\omega}_o) &= \int_\Omega rac{DFG}{4(oldsymbol{\omega}_o\cdot\mathbf{n})(oldsymbol{\omega}_i\cdot\mathbf{n})}L_i(\mathbf{x},oldsymbol{\omega}_i)(oldsymbol{\omega}_i\cdot\mathbf{n})\mathrm{d}oldsymbol{\omega}_i, \end{aligned}$$

• Specifically, for the specular term:

$$F(\boldsymbol{\omega}_{o}, \mathbf{h}, k_{r}) = F_{0} + \left(\max(1 - k_{r}, F_{0}) - F_{0}\right) \left(1 - (\boldsymbol{\omega}_{o} \cdot \mathbf{h})\right)^{5},$$
$$L_{s}(\mathbf{x}, \boldsymbol{\omega}_{o}) = \left(F(\boldsymbol{\omega}_{o}, \mathbf{h}, k_{r})B_{0}(\boldsymbol{\omega}_{o} \cdot \mathbf{n}, k_{r}) + B_{1}(\boldsymbol{\omega}_{o} \cdot \mathbf{n}, k_{r})\right) \int_{\Omega} D(\boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}, \mathbf{n}, k_{r})L_{i}(\mathbf{x}, \boldsymbol{\omega}_{i})\mathrm{d}\boldsymbol{\omega}_{i},$$

Method: Training

• We leverage multiple HDRs and keep rotating them to encourage the predicted BRDF materials to disentangle from environment lights.

• The SDS loss w.r.t. the parameters of material network becomes:

$$\nabla_{\gamma} \mathcal{L}_{\text{SDS}}(\phi, x) = \mathbb{E}_{t,\epsilon} \left[w(t) (\epsilon_{\phi}(z_t; y, t) - \epsilon) \frac{\partial z}{\partial x} \frac{\partial x}{\partial \mathbf{k}} \frac{\partial \mathbf{k}}{\partial \gamma} \right]$$

• A material smoothness regularizer is used for enforcing smooth diffuse materials.

$$\mathcal{L}_{ ext{mat}} = \sum_{\mathbf{x} \in \mathcal{S}} |\mathbf{k}_d(\mathbf{x}) - \mathbf{k}_d(\mathbf{x} + oldsymbol{\epsilon})|$$

Results: Gallery of generated 3D assets

A plate piled high with chocolate chip cookies

A rabbit, animated movie character, high detail 3d model

A car made out of sushi

Results: Qualitative comparison

• Compared to baselines, our results have more natural textures and richer details.

Results: Quantitative results

• Our method MATLABER outperforms baselines on realism, details and disentanglement.

Table 1: Mean opinion scores in range $1\sim 5,$ where 1 means the lowest score and 5 is the highest score.

Method	Alignment	Realism	Details	Disentanglement
DreamFusion [4]	3.97 (± 0.66)	3.56 (± 0.43)	3.23 (± 0.61)	3.48 (± 0.59)
Magic3D [8]	4.01 (± 0.59)	3.84 (± 0.72)	3.70 (± 0.66)	3.14 (± 0.89)
Fantasia3D [7]	3.76 (± 0.82)	4.17 (± 0.65)	4.27 (± 0.75)	2.93 (± 0.95)
Ours	3.81 (± 0.75)	4.35 (± 0.60)	4.31 (± 0.70)	3.89 (± 0.65)

• For the **alignment**, I want to talk about the deficiency of stable diffusion (CLIP).

DreamFusion

Results: Relighting results

- Our generated realistic and coherent materials naturally allows relighting.
- We show our 3D assets relit under a rotating environment light.

Results: Material interpolation

• Thanks to the smooth latent space of our BRDF auto-encoder, we can conduct a linear interpolation on the BRDF embeddings to achieve material interpolation.

Results: Failure cases

• Owing to imperfect geometry, our generated 3D objects will present clear artifacts under some novel illuminations.

Future work

- Refine geometry for shape-appearance alignment
- Larger BRDF dataset for better materials
- Better disentanglement
- Diversity problem
- From 3D objects to others
- • •

Project page:

Thanks for listening!