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Abstract

Based on powerful text-to-image diffusion models, text-to-3D generation has made
significant progress in generating compelling geometry and appearance. However,
existing methods still struggle to recover high-fidelity object materials, either only
considering Lambertian reflectance, or failing to disentangle BRDF materials from
the environment lights. In this work, we propose Material-Aware Text-to-3D
via LAtent BRDF auto-EncodeR (MATLABER) that leverages a novel latent
BRDF auto-encoder for material generation. We train this auto-encoder with large-
scale real-world BRDF collections and ensure the smoothness of its latent space,
which implicitly acts as a natural distribution of materials. During appearance
modeling in text-to-3D generation, the latent BRDF embeddings, rather than BRDF
parameters, are predicted via a material network. Through exhaustive experiments,
our approach demonstrates the superiority over existing ones in generating realistic
and coherent object materials. Moreover, high-quality materials naturally enable
multiple downstream tasks such as relighting and material editing. Code and
model will be publicly available at https://sheldontsui.github.io/
projects/Matlaber.

1 Introduction

3D asset creation is imperative for various industrial applications such as gaming, film, and AR/VR.
Traditional 3D asset creation pipeline involves multiple labor-intensive and time-consuming stages
[1], all of which rely on specialized knowledge and professional aesthetic training. Thanks to the
recent development of generative models, recent text-to-3D pipelines that automatically generate 3D
assets from purely textual descriptions have received growing attention, due to their rapid advances
in generation quality and efficiency, as well as their potential of significantly reducing the time and
skill requirement of traditional 3D asset creation.

Gradually optimizing the target 3D asset represented as NeRF [2] or DMTET [3] through the SDS loss
[4], compelling geometry and appearance can be obtained by these text-to-3D pipelines [5, 6, 4, 7–9].
However, as shown in Figure1, they still struggle to recover high-fidelity object materials, which
significantly limits their real-world applications such as relighting. Although attempts have been made
to model Lambertian reflectance [4, 8] and bidirectional reflectance distribution function (BRDF) [7],
in their designs, the neural network responsible for predicting materials has no sufficient motivation
and clues to unveil an appropriate material that obeys the natural distribution, especially under fixed
light conditions, where their predicted material is often entangled with environment lights.

In this work, we resort to existing rich material data to learn a novel text-to-3D pipeline that
effectively disentangles material from environment lights. In fact, despite the inaccessibility of
paired datasets of material and text descriptions, there exist large-scale BRDF material datasets such
as MERL BRDF [10], Adobe Substance3D materials [11], and the real-world BRDF collections
TwoShotBRDF [12]. Therefore, we propose Material-Aware Text-to-3D via LAtent BRDF auto-
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Figure 1: Text-to-3D generation aims to synthesize high-quality 3D assets aligning with given
text descriptions. Despite the impressive appearance, representative methods like DreamFusion [4]
and Fantasia3D [7] still fail to recover high-fidelity object materials. Specifically, DreamFusion
only considers diffuse materials while Fantasia3D always predicts BRDF materials entangled with
environment lights. Based on a latent BRDF auto-encoder, our approach is capable of generating
natural materials for 3D assets, enabling realistic renderings under different illuminations.

EncodeR (MATLABER) that leverages a novel latent BRDF auto-encoder to synthesize natural
and realistic materials that accurately align with given text prompts. The latent BRDF auto-encoder
is trained to embed real-world BRDF priors of TwoShotBRDF in its smooth latent space, so that
MATLABER can predict BRDF latent codes instead of BRDF values to focus more on choosing the
most suitable material and worry less about the validity of predicted BRDF.

Thanks to the smooth latent space of the BRDF auto-encoder, our approach ensures the realism and
coherence of object materials, achieving the ideal disentanglement of geometry and appearance. As
shown in Figure 1, our approach can create 3D assets with high-fidelity material, outperforming
previous state-of-the-art text-to-3D pipelines. More importantly, the effective estimation of object
materials naturally allows various operations such as relighting, material editing, and scene manipu-
lation, which can hardly be achieved before our work. It’s noteworthy that these downstream tasks
are extremely crucial for a series of real-world applications, paving the way for a more convenient
paradigm of 3D content creation. Furthermore, by exploiting multi-modal datasets like ObjectFolder,
our model has the potential to infer acoustic and tactile information from the obtained materials,
which constitute the trinity of material for virtual objects.

2 Related Work

2.1 Text-to-Image Generation

In recent years, we have witnessed significant progress in text-to-image generation empowered by
diffusion models. By training on large-scale text-image paired datasets, diffusion models can implic-
itly link semantic concepts and corresponding text prompts, and thus is capable of generating various
and complex images of objects and scenes [13–16]. While GLIDE [13] obtains text embeddings via
a pretrained CLIP [17] model, Imagen [14] and eDiff-I [18] adopt larger language models such as
T5 [19] to achieve more diverse image synthesis and a deeper level of language understanding. To
enable text-to-image training on limited computational resources, Stable Diffusion [16] leverages the
latent diffusion model (LDM) and trains its diffusion model on the latent space instead of the pixel
space, demonstrating highly competitive performance in terms of quality and flexibility. However, all
of these works are constrained to the 2D domain and ignore the huge demand in the 3D field.

2.2 Text-to-3D Generation with 2D Supervision

With the great success of text-to-image synthesis, text-to-3D generation has gained significant
attention in recent years as a promising way to generate high-quality 3D content from simple
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textual input. Different from text-to-image generation, no massive text-3D paired data is available,
making it infeasible to train a text-to-3D model as in training a text-to-image model. Alternatively,
DreamField [5] and CLIP-mesh [6] explore the 2D supervision by using a pre-trained CLIP model
to optimize the underlying 3D representations, such as NeRFs and meshes, to achieve high text-
image alignment scores for multi-view renderings. Later, DreamFusion [4] utilizes, for the first
time, a powerful 2D text-to-image diffusion model [14] as a prior and introduces an effective Score
Distillation Sampling (SDS) loss to guide the optimization. Based on the promising SDS loss,
Magic3D [8] optimizes 3D objects in two consecutive stages and further improves the rendered
resolution of generated 3D objects from 64 to 512, showing impressive performance in text-to-3D
generation. In Fantasia3D [7], Chen et al proposes to represent 3D objects with flexible DMTET
representation [3] and model the appearance via the BRDF modeling, which can successfully generate
compelling geometry and photorealistic object appearance. Recently, ProlificDreamer [9] proposes a
more advanced guiding loss, Variational Score Distillation (VSD), for more diverse and high-fidelity
object generation. Unlike these works, we aim to recover the inherent material information in
text-to-3D generation, empowering more downstream applications such as relighting and material
editing.

2.3 Material Estimation

In the community of computer vision and graphics, researchers aim to estimate surface materials
for decades. The Bidirectional Reflection Distribution function (BRDF) is the most widely used
material model, which characterizes how a surface reflects lighting from an incident direction toward
an outgoing direction [20, 21]. One line of research works [22–25] targets recovering the reflectance
from known 3D geometry and some methods [26–31] only focus on BRDF acquisition of 2D
planar geometry. Moreover, the simultaneous acquisition of 3D geometry and materials has also
gained a surge of interest and several solid papers [32–36] have already achieved compelling results
on in-the-wild scenarios. Specifically, Neural-PIL [34] and NeRFactor [35] both leverage BRDF
datasets for material priors. Unlike these methods, we aim to create high-quality surface materials
aligning with the provided text prompts. Concurrent to this work, Fantasia3D [7] also explores the
automatic creation of surface materials and object geometries from given language models. However,
their obtained materials are unluckily entangled with lights and thus intractable to put into new
environments.

3 Method

We present Material-Aware Text-to-3D via LAtent BRDF auto-EncodeR (MATLABER), aiming for
photorealistic and relightable text-to-3D object generation. In the following, preliminaries on score
distillation sampling are first presented in Section 3.1. Then in Section 3.2, we review appearance
modeling in prior works and analyze their intrinsic deficiencies in the relighting scenarios. Finally,
we introduce the latent BRDF auto-encoder in Section 3.3 and discuss how to incorporate it into
material-aware text-to-3D generation in Section 3.4. An overview of our framework is illustrated in
Figure 2.

3.1 Score Distillation Sampling (SDS)

DreamFusion [4] first achieves high-quality text-to-3D generation with a pretrained text-to-image
diffusion model. It represents the scene with a modified Mip-NeRF [37], which can produce an
image x = g(θ) at the desired camera pose. Here, g is a differentiable renderer, and θ is a coordinate-
based MLP representing a 3D volume. The diffusion model ϕ comes with a learned denoising
function ϵϕ(xt; y, t) that predicts the sampled noise ϵ given the noisy image xt, noise level t, and
text embedding y. Specifically, to update the scene parameters θ, DreamFusion introduces Score
Distillation Sampling (SDS), which computes the gradient as:

∇θLSDS(ϕ, x) = Et,ϵ

[
w(t)(ϵϕ(xt; y, t)− ϵ)

∂x

∂θ

]
, (1)

where w(t) is a weighting function. Here, we follow Stable-dreamfusion [38] or Fantasia3D [7]
and leverage the publicly available latent diffusion model (LDM) like Stable Diffusion [16] as our
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guidance model. Therefore, the SDS loss now becomes:

∇θLSDS(ϕ, x) = Et,ϵ

[
w(t)(ϵϕ(zt; y, t)−ϵ)

∂z

∂x

∂x

∂θ

]
. (2)

Intuitively, SDS loss will push all the rendered images to the high probability density regions given by
the pretrained diffusion model [8]. Apart from the rendered RGB images, Fantasia3D [7] regards the
surface normal maps n as special images and shows applying SDS loss on normal maps encourages
to generate good object geometry with fine details.

3.2 Appearance Modeling in Text-to-3D Generation

To employ the SDS loss, prior works adopt different schemes to model the appearance of 3D objects.
DreamFusion [4] leverages a reflectance model similar to [25, 39–41] and only considers diffuse
reflectance [42, 43] while rendering multi-view images. For each point x on a specific ray, the RGB
albedo ρ and volumetric density τ are predicted via a MLP, and the surface normal n is obtained
with n = −∇xτ/∥∇xτ∥. After accumulating each normal n and albedo ρ in a ray with volume
rendering [44], assuming some point light source with 3D coordinate ℓ and color ℓρ, and an ambient
light color ℓa, DreamFusion employs Lambertian shading to produce a color c for each pixel as:

c = ρ ◦ (ℓρ ◦max(0,n · (ℓ− x)/∥ℓ− x∥) + ℓa) . (3)

Although generating various 3D objects with appealing appearances, DreamFusion fails to model
specular reflectance, which is an indispensable term in the material that leads to photorealistic
renderings under different illuminations. Magic3D [8] uses more advanced DMTET [3] as the scene
representation and targets at higher-fidelity 3D models but still adopts Lambertian shading when
texturing the object meshes extracted from DMTET. Hence, their synthesized 3D objects all lack
complete material information, significantly limiting their applications in real-world scenarios.

To achieve more photorealistic and relightable rendering, Fantasia3D [7] introduces the spatially
varying Bidirectional Reflectance Distribution Function (BRDF) into text-to-3D generation. They
represent the material with three components [45], namely the diffuse term kd ∈ R3, the roughness
and metallic term krm ∈ R2 containing roughness kr and metalness factor m, as well as the normal
variation term kn ∈ R3. According to the convention in [46], the specular term ks is computed with
ks = (1 − m) · 0.04 +m · kd. For a specific surface point x with normal n and outgoing view
direction ωo, the final rendering L(x,ωo) can be obtained following the rendering equation [47]:

L(x,ωo) =

∫
Ω

Li(x,ωi)f(x,ωi,ωo;kd,ks)(ωi · n)dωi, (4)

where incident light Li comes from the direction ωi and BRDF f is related to the diffuse term kd

and the specular term ks. However, in Fantasia3D [7], the metalness factor m is usually set to 0 and
thus the specular term ks is actually ignored during the appearance modeling. Moreover, they utilize
a fixed HDR environment map with uniform brightness distribution as the environment lights all
the time. Despite its appealing appearance under fixed illuminations, Fantasia3D always predicts
materials entangled with environmental lights, which leads to unrealistic renderings under novel
lighting conditions.

3.3 Latent BRDF Auto-Encoder

Confronted with the limitations of prior works, we take both diffuse and specular terms into con-
sideration for appearance modeling. Specifically, for a surface point x, we aim to estimate the
Cook-Torrence [48] BRDF parameter k ∈ R7 including diffuse kd ∈ R3, specular ks ∈ R3, and
roughness kr ∈ R. However, directly optimizing on standard BRDF space lacks necessary constraints
and may make the predicted materials fall into invalid BRDF regions. As mentioned in Section 1, we
resort to data-driven BRDF priors that are learned from real-world BRDF data collections.

Inspired by previous literature on reflectance decomposition [35, 34], we leverage TwoShotBRDF [12]
dataset to train a latent BRDF auto-encoder for such a material prior. TwoShotBRDF is a real-
world BRDF material dataset containing 11, 250 high-quality SVBRDF maps of size 768 × 768
collected from various online sources, where each pixel represents an independent BRDF parameter.
Following [49, 34], interpolating auto-encoders are adopted here for smoother interpolation in the
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Figure 2: Left: Our latent BRDF auto-encoder is trained on the TwoShotBRDF dataset with four
losses, i.e., reconstruction loss, KL divergence loss, smoothness loss, and cyclic loss. Imposing KL
divergence and smoothness loss on latent embeddings encourages a smooth latent space [34]. Right:
Instead of predicting BRDF materials directly, we leverage a material MLP Γ to generate latent
BRDF code z, which is then decoded to 7-dim BRDF parameters via our pretrained decoder. Similar
to prior works, the SDS loss can be applied to the rendered images, which empowers the training
of our material MLP network. (Note that, roughness kr is scalar and we visualize it with the green
channel in this paper.)

latent space. As illustrated in Figure 2, our BRDF auto-encoder consists of an MLP encoder E and an
MLP decoder D. Given a BRDF parameter k, the encoder will generate a 4-dim latent code z = E(k),
which is then reconstructed to a 7-dim BRDF k̂ = D(z) via the decoder network. Here, apart from
the standard L2 reconstruction loss Lr, we additionally employ a Kullback–Leibler (KL) divergence
loss LKL = KL(p(z)||N (0, I)) to encourage the smoothness of latent space. Moreover, for an ideal
smooth latent space, the linearly interpolated embeddings zn = α · za + (1− α) · zb between two
random latent codes za and zb could be also decoded to a reasonable BRDF parameter k̂n = D(zn).
We, therefore, impose a smoothness loss Ls =

∑
n(∇αD(zn))

2 for a batch of uniformly interpolated
latent codes zn following [34]. After adding the L2 cyclic loss Lc between interpolated code zn and
the re-encoded counterpart ẑn = E(k̂n), the total loss for our latent BRDF auto-encoder training is a
combination of four losses:

L = Lr + λKLLKL + λsLs + λcLc, (5)

where λKL, λs and λc are all balancing coefficients. With this total loss function, our encoder and
decoder networks are trained jointly.

3.4 Material-Aware Text-to-3D

In this work, we divide the whole text-to-3D generation into two consecutive stages: geometry
generation and appearance generation. Following Fantasia3D [7], we represent the 3D objects with
the hybrid scene representation of DMTET owing to its superior performance in geometry modeling
and photorealistic surface rendering. While generating the geometry, we employ the SDS loss on
normal maps similar to strategies proposed in [7]. For the DMTET predicted by a geometry MLP
ψ, a differentiable render g can render a normal map n from a randomly sampled camera pose c as
follows: n = g(ψ, c). Then, the SDS loss on normal maps n will help the geometry MLP ψ update
until it converges to a satisfactory geometry aligning with the given text prompt.

Once obtaining the geometry of 3D objects, we can leverage our latent BRDF auto-encoder for
appearance generation. As shown in Figure 2, for any point x on the surface, we first apply the
hash-grid positional encoding β(·) [50] and then use a material MLP Γ parameterized as γ to predict
its BRDF latent code zx, which is then transferred to 7-dim BRDF parameter kx via the pre-trained
BRDF decoder D following:

zx = Γ(β(x); γ), kx = D(zx). (6)

Equipped with this crucial material information kz = [kd,ks, kr], the point x can be rendered
with the aforementioned rendering equation 4 under given incoming light Li(ωi) from direction
ωi. Specifically, for the point x with normal n and outgoing view direction ωo, the final rendering
L(x,ωo) is the summation of diffuse intensity Ld and specular intensity Ls as L(x,ωo) = Ld(x) +
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Ls(x,ωo), and the two terms can be computed as follows:

Ld(x) = kd(1−m)

∫
Ω

Li(x,ωi)(ωi · n)dωi,

Ls(x,ωo) =

∫
Ω

DFG

4(ωo · n)(ωi · n)
Li(x,ωi)(ωi · n)dωi,

(7)

where D, G, and F are functions representing the GGX [51] normal distribution (NDF), geometric
attenuation, and Fresnel term, respectively. It’s noteworthy that the integration over the hemisphere Ω
can be calculated using the split-sum method following [46, 36]. In particular, the specular intensity
Ls(x,ωo) is further approximated as:

F (ωo,h, kr) = F0 +
(
max(1− kr, F0)− F0

)(
1− (ωo · h)

)5
, (8)

Ls(x,ωo) =
(
F (ωo,h, kr)B0(ωo · n, kr) +B1(ωo · n, kr)

) ∫
Ω

D(ωi,ωo,n, kr)Li(x,ωi)dωi,

(9)

where h = (ωi + ωo)/|ωi + ωo| represents the half vector, F0 is the specular albedo ks
1, and B0

and B1 are two pre-computed 2D lookup textures (LUT) indexed by (ωo · n) and the roughness kr.

During the appearance modeling, we will leverage multiple environment maps and keep vertically
rotating these maps to encourage the predicted BRDF materials to disentangle from environment
lights. Given a sampled camera viewpoint, the rendered image x is actually the aggregation of
rendered pixels along the outgoing view direction ωo, which can be obtained with Equation 7.
Accordingly, we can apply the aforementioned SDS loss in Equation 2 to the rendered image x and
the material MLP Γ can be optimized with the gradient w.r.t. its parameter γ:

∇γLSDS(ϕ, x) = Et,ϵ

[
w(t)(ϵϕ(zt; y, t)−ϵ)

∂z

∂x

∂x

∂k

∂k

∂γ

]
. (10)

Apart from the SDS loss, a material smoothness regularizer is extra utilized for enforcing smooth
diffuse materials following [36, 35]. For a surface point x with diffuse kd(x), the regularizer is
defined as:

Lmat =
∑
x∈S

|kd(x)− kd(x+ ϵ)|, (11)

where S denotes the object surface and ϵ is a small random 3D perturbation.

4 Experiments

Implementation details. While training our latent BRDF auto-encoder, we will scatter all the
SVBRDF maps to 7-dim BRDF parameters and randomly shuffle them for training. We set the batch
size to 256, and loss balancing coefficients λKL, λs and λc to 2e-4, 0.05, and 1e-4, respectively.
Our BRDF auto-encoder is trained for 30 epochs using the AdamW optimizer with a learning rate
of 1e-4 on an NVIDIA A100 GPU. For the geometry generation, we initialize the DMTET with
either a 3D ellipsoid, a 3D cylinder, or a customized 3D model provided by users following [7].
During the text-to-3D generation, the 3D object is optimized on 4 NVIDIA A100 GPUs with an
AdamW optimizer, where each GPU loads 9 images rendered from randomly sampled camera poses.
Specifically, our method spends 3, 000 iterations (learning rate 0.001) on geometry modeling and
2, 000 iterations (learning rate 0.01) on material generation. For the weight in score distillation
sampling, we always adopt the strategy I proposed in Fantasia3D [7].

Qualitative results. Given text descriptions, our method MATLABER is capable of generating
photorealistic 3D assets and simultaneously obtaining high-fidelity BRDF materials. In this section,
we compare our approach with three representative methods, namely DreamFusion [4], Magic3D [8],
and Fantasia3D [7]. As shown in Figure 4, we present the comparative results given the same text
descriptions. For Fantasia3D, 3D assets are synthesized with their official code, while results of
DreamFusion and Magic3D are borrowed from their project pages owing to the inaccessibility of

1The definition of specular albedo ks is different from that mentioned in Section 3.2, which is actually equal
to F (ωo,h, kr) computed here. For convenience, we still use the notation ks for specular albedo.
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A sliced loaf of fresh bread A DSLR photo of a hamburger

A pineapple A delicious croissant 

A typewriter A blue tulip

A plush dragon toy A rabbit, animated movie character, high detail 3d model

A car made out of sushi A lionfish

Figure 3: The gallery of our text-to-3D generation results. Shapes, normal maps, and shaded images
from two random viewpoints are presented here.

their model weights. Thanks to the latent BRDF auto-encoder, our method generates competitive
geometry as Fantasia3D and demonstrates a better appearance with more natural textures and richer
details. Moreover, the gallery of more 3D assets generated with MATLABER is provided in Figure 3.

User study. To evaluate the quality of generated 3D objects from human’s perspective, we invited
80 volunteers to conduct a user study. For each participant, he/she will view 10 randomly selected
3D objects generated by our approach and three baseline methods. They are asked to evaluate these
3D assets in four different dimensions: ‘alignment’, ‘realism’, ‘details’, and ‘disentanglement’.
Alignment means how closely the generated 3D objects match the given text prompts, and realism
reflects the fidelity of synthesized mesh textures. Besides, users also need to judge the richness of
details on these 3D objects. Finally, we extra present the corresponding diffuse materials and ask
them whether the diffuse is disentangled from the environment lights.

Totally, we collect 800 responses, and the comparative results are summarized in Table 1. Our method
MATLABER achieves the best performance on three evaluation protocols, i.e., realism, details, and

7



Table 1: Mean opinion scores in range 1 ∼ 5, where 1 means the lowest score and 5 is the highest
score.

Method Alignment Realism Details Disentanglement

DreamFusion [4] 3.97 (± 0.66) 3.56 (± 0.43) 3.23 (± 0.61) 3.48 (± 0.59)
Magic3D [8] 4.01 (± 0.59) 3.84 (± 0.72) 3.70 (± 0.66) 3.14 (± 0.89)

Fantasia3D [7] 3.76 (± 0.82) 4.17 (± 0.65) 4.27 (± 0.75) 2.93 (± 0.95)
Ours 3.81 (± 0.75) 4.35 (± 0.60) 4.31 (± 0.70) 3.89 (± 0.65)

An ice cream sundae

A 3D model of an adorable cottage with a thatched roof 

DreamFusion Magic3D Fantasia3D Ours

A plate piled high with chocolate chip cookies

Figure 4: Qualitative comparisons to baselines. Our results have more natural textures and richer
details.

disentanglement. Especially for disentanglement, ours outperforms three baseline methods by a large
margin, showing the effectiveness of our proposed latent BRDF auto-encoder model. In terms of
alignment, DreamFusion [4] and Magic3D [8] both capitalize on large-scale language models such as
T5 [19] and therefore demonstrate better alignment with the text descriptions. Unfortunately, these
models are all not released for public usage.

Relighting and material editing. Since our model is capable of generating BRDF materials, we
can implement relighting on these 3D assets. To validate the fidelity of our generated materials, we
manually rotate an HDR environment map and thus obtain a series of HDR maps with different
environment lights. As shown in Figure 5, the relit objects under different illuminations are all natural
and photorealistic. Moreover, thanks to the smooth latent space of our BRDF auto-encoder, we can
also conduct material interpolation if given two different material descriptions. Figure 6 demonstrates
a smooth material morphing on the goblet and tulip. For example, given the text prompts of “A golden
goblet” and “A silver goblet”, we can obtain their corresponding material latent embeddings after the
optimization, and the final results can be obtained via a naive interpolation on the latent embeddings.

5 Conclusion

In this work, we propose MATLABER, a novel latent BRDF auto-encoder for material-aware text-to-
3D generation. This auto-encoder is trained with large-scale real-world BRDF collections, providing
implicit material prior for the appearance modeling in text-to-3D generation. Thanks to such a
material prior, our approach can generate high-quality and coherent object materials in text-to-3D
synthesis, achieving the ideal disentanglement of geometry and appearance. Moreover, the generated
BRDF materials also support various operations such as relighting, material editing, and scene
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𝑘𝑑 𝑘𝑠 roughness
relighting

Figure 5: Relighting results. On the left side, we list the generated BRDF materials, including diffuse,
specular, and roughness. The relit images under a rotating environment light are presented on the
right side.

𝑘 𝑑
sh
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ed

golden silver blue red

Figure 6: Material interpolation results. Thanks to the smooth latent space of our BRDF auto-encoder,
we can conduct a linear interpolation on the BRDF embeddings. As can be observed here, a golden
goblet will turn into a silver goblet while the color of the tulip changes from blue to red gradually.

Figure 7: Failure cases. Owing to imperfect geometry, our generated 3D objects will present clear
artifacts under some novel illuminations.

manipulations. Meanwhile, our latent BRDF auto-encoder potentially can be used in other tasks to
predict materials instead of RGB values to enable the ability of relighting and material editing.

Limitations. Our generated 3D objects will present artifacts under some environment lights owing
to imperfect geometry. As shown in Figure 7, there exist some weird textures on the top or the side
of the bread, and the relit strawberry presents many undesirable hollows. The problem of imperfect
geometry is not our focus here and is expected to be solved in future research. Besides, 3D assets
generated by our current method still lack diversity and we are interested in circumventing it with
promising Variational Score Distillation (VSD) loss proposed in [9].
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